111 research outputs found

    ACRATA: a novel electron transfer domain associated to apoptosis and cancer

    Get PDF
    BACKGROUND: Recently, several members of a vertebrate protein family containing a six trans-membrane (6TM) domain and involved in apoptosis and cancer (e.g. STEAP, STAMP1, TSAP6), have been identified in Golgi and cytoplasmic membranes. The exact function of these proteins remains unknown. METHODS: We related this 6TM domain to distant protein families using intermediate sequences and methods of iterative profile sequence similarity search. RESULTS: Here we show for the first time that this 6TM domain is homolog to the 6TM heme binding domain of both the NADPH oxidase (Nox) family and the YedZ family of bacterial oxidoreductases. CONCLUSIONS: This finding gives novel insights about the existence of a previously undetected electron transfer system involved in apoptosis and cancer, and suggests further steps in the experimental characterization of these evolutionarily related families

    Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer

    Get PDF
    In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERΞ²) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with β‰ˆ 55% of them in extragenic DNA regions and an intriguing involvement of the 5β€² domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa

    MicroRNA-375 plays a dual role in prostate carcinogenesis

    Get PDF
    Background: Prostate cancer (PCa), a highly incident and heterogeneous malignancy, mostly affects men from developed countries. Increased knowledge of the biological mechanisms underlying PCa onset and progression are critical for improved clinical management. MicroRNAs (miRNAs) deregulation is common in human cancers, and understanding how it impacts in PCa is of major importance. MiRNAs are mostly downregulated in cancer, although some are overexpressed, playing a critical role in tumor initiation and progression. We aimed to identify miRNAs overexpressed in PCa and subsequently determine its impact in tumorigenesis. Results: MicroRNA expression profiling in primary PCa and morphological normal prostate (MNPT) tissues identified 17 miRNAs significantly overexpressed in PCa. Expression of three miRNAs, not previously associated with PCa, was subsequently assessed in large independent sets of primary tumors, in which miR-182 and miR-375 were validated, but not miR-32. Significantly higher expression levels of miR-375 were depicted in patients with higher Gleason score and more advanced pathological stage, aswellaswithregionallymph nodesmetastases. Forced expression of miR-375 in PC-3 cells, which display the lowest miR-375 levels among PCa cell lines, increased apoptosis and reduced invasion ability and cell viability. Intriguingly, in 22Rv1 cells, which displayed the highest miR-375 expression, knockdown experiments also attenuated the malignant phenotype. Gene ontology analysis implicated miR-375 in several key pathways deregulated in PCa, including cell cycle and cell differentiation. Moreover, CCND2 was identified as putative miR-375 target in PCa, confirmed by luciferase assay. Conclusions: A dual role for miR-375 in prostate cancer progression is suggested, highlighting the importance of cellular context on microRNA targeting.Research Center of Portuguese Oncology Institute - Porto (CI-IPOP 4–2012) and by the Federal funds through Programa Operacional TemΓ‘tico Factores de Competitividade (COMPETE) with co-participation from the European Community Fund (FEDER) and by the National funds through Fundação para a CiΓͺncia e TecnologΓ­a (FCT) under the projects EXPL/BIM-ONC/0556/2012. FQV and JRC were or are supported by FCT-Fundação para a CiΓͺncia e a Tecnologia grants (SFRH/BD/70564/2010 and SFRH/BD/71293/2010, respectively)

    The RNA Binding Protein SAM68 Transiently Localizes in the Chromatoid Body of Male Germ Cells and Influences Expression of Select MicroRNAs

    Get PDF
    The chromatoid body (CB) is a unique structure of male germ cells composed of thin filaments that condense into a perinuclear organelle after meiosis. Due to the presence of proteins involved in different steps of RNA metabolism and of different classes of RNAs, including microRNAs (miRNAs), the CB has been recently suggested to function as an RNA processing centre. Herein, we show that the RNA binding protein SAM68 transiently localizes in the CB, in concomitance with the meiotic divisions of mouse spermatocytes. Precise staging of the seminiferous tubules and co-localization studies with MVH and MILI, two well recognized CB markers, documented that SAM68 transiently associates with the CB in secondary spermatocytes and early round spermatids. Furthermore, although SAM68 co-immunoprecipitated with MVH in secondary spermatocytes, its ablation did not affect the proper localization of MVH in the CB. On the other hand, ablation of the CB constitutive component MIWI did not impair association of SAM68 with the CB. Isolation of CBs from Sam68 wild type and knockout mouse testes and comparison of their protein content by mass spectrometry indicated that Sam68 ablation did not cause overall alterations in the CB proteome. Lastly, we found that SAM68 interacts with DROSHA and DICER in secondary spermatocytes and early round spermatids and that a subset of miRNAs were altered in Sam68βˆ’/βˆ’germ cells. These results suggest a novel role for SAM68 in the miRNA pathway during spermatogenesis

    Computational Analysis of mRNA Expression Profiles Identifies MicroRNA-29a/c as Predictor of Colorectal Cancer Early Recurrence

    Get PDF
    Colorectal cancer (CRC) is one of the leading malignant cancers with a rapid increase in incidence and mortality. The recurrences of CRC after curative resection are sometimes unavoidable and often take place within the first year after surgery. MicroRNAs may serve as biomarkers to predict early recurrence of CRC, but identifying them from over 1,400 known human microRNAs is challenging and costly. An alternative approach is to analyze existing expression data of messenger RNAs (mRNAs) because generally speaking the expression levels of microRNAs and their target mRNAs are inversely correlated. In this study, we extracted six mRNA expression data of CRC in four studies (GSE12032, GSE17538, GSE4526 and GSE17181) from the gene expression omnibus (GEO). We inferred microRNA expression profiles and performed computational analysis to identify microRNAs associated with CRC recurrence using the IMRE method based on the MicroCosm database that includes 568,071 microRNA-target connections between 711 microRNAs and 20,884 gene targets. Two microRNAs, miR-29a and miR-29c, were disclosed and further meta-analysis of the six mRNA expression datasets showed that these two microRNAs were highly significant based on the Fisher p-value combination (pβ€Š=β€Š9.14Γ—10βˆ’9 for miR-29a and pβ€Š=β€Š1.14Γ—10βˆ’6 for miR-29c). Furthermore, these two microRNAs were experimentally tested in 78 human CRC samples to validate their effect on early recurrence. Our empirical results showed that the two microRNAs were significantly down-regulated (pβ€Š=β€Š0.007 for miR-29a and pβ€Š=β€Š0.007 for miR-29c) in the early-recurrence patients. This study shows the feasibility of using mRNA profiles to indicate microRNAs. We also shows miR-29a/c could be potential biomarkers for CRC early recurrence

    The functional significance of microRNA-145 in prostate cancer

    Get PDF
    BackgroundMicroRNAs (miRNAs) are small noncoding RNAs that have important roles in numerous cellular processes. Recent studies have shown aberrant expression of miRNAs in prostate cancer tissues and cell lines. On the basis of miRNA microarray data, we found that miR-145 is significantly downregulated in prostate cancer.Methods and resultsWe investigated the expression and functional significance of miR-145 in prostate cancer. The expression of miR-145 was low in all the prostate cell lines tested (PC3, LNCaP and DU145) compared with the normal cell line, PWR-1E, and in cancerous regions of human prostate tissue when compared with the matched adjacent normal. Overexpression of miR-145 in PC3-transfected cells resulted in increased apoptosis and an increase in cells in the G2/M phase, as detected by flow cytometry. Investigation of the mechanisms of inactivation of miR-145 through epigenetic pathways revealed significant DNA methylation of the miR-145 promoter region in prostate cancer cell lines. Microarray analyses of miR-145-overexpressing PC3 cells showed upregulation of the pro-apoptotic gene TNFSF10, which was confirmed by real-time PCR and western analysis.ConclusionOne of the genes significantly upregulated by miR-145 overexpression is the proapoptotic gene TNFSF10. Therefore, modulation of miR-145 may be an important therapeutic approach for the management of prostate cancer

    Genome-Wide Profiling of Histone H3 Lysine 4 and Lysine 27 Trimethylation Reveals an Epigenetic Signature in Prostate Carcinogenesis

    Get PDF
    BACKGROUND: Increasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more dynamic patterns of gene activation and repression has remained largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide profiling of the trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) was performed using chromatin immunoprecipitation coupled with whole genome promoter microarray (ChIP-chip) techniques. Comparison of the ChIP-chip data and microarray gene expression data revealed that loss and/or gain of H3K4me3 and/or H3K27me3 were strongly associated with differential gene expression, including microRNA expression, between prostate cancer and primary cells. The most common switches were gain or loss of H3K27me3 coupled with low effect on gene expression. The least prevalent switches were between H3K4me3 and H3K27me3 coupled with much higher fractions of activated and silenced genes. Promoter patterns of H3K4me3 and H3K27me3 corresponded strongly with coordinated expression changes of regulatory gene modules, such as HOX and microRNA genes, and structural gene modules, such as desmosome and gap junction genes. A number of epigenetically switched oncogenes and tumor suppressor genes were found overexpressed and underexpressed accordingly in prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: This work offers a dynamic picture of epigenetic switches in carcinogenesis and contributes to an overall understanding of coordinated regulation of gene expression in cancer. Our data indicate an H3K4me3/H3K27me3 epigenetic signature of prostate carcinogenesis

    Circuit-based interrogation of sleep control.

    Get PDF
    Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain

    NCI60 Cancer Cell Line Panel Data and RNAi Analysis Help Identify EAF2 as a Modulator of Simvastatin and Lovastatin Response in HCT-116 Cells

    Get PDF
    Simvastatin and lovastatin are statins traditionally used for lowering serum cholesterol levels. However, there exists evidence indicating their potential chemotherapeutic characteristics in cancer. In this study, we used bioinformatic analysis of publicly available data in order to systematically identify the genes involved in resistance to cytotoxic effects of these two drugs in the NCI60 cell line panel. We used the pharmacological data available for all the NCI60 cell lines to classify simvastatin or lovastatin resistant and sensitive cell lines, respectively. Next, we performed whole-genome single marker case-control association tests for the lovastatin and simvastatin resistant and sensitive cells using their publicly available Affymetrix 125K SNP genomic data. The results were then evaluated using RNAi methodology. After correction of the p-values for multiple testing using False Discovery Rate, our results identified three genes (NRP1, COL13A1, MRPS31) and six genes (EAF2, ANK2, AKAP7, STEAP2, LPIN2, PARVB) associated with resistance to simvastatin and lovastatin, respectively. Functional validation using RNAi confirmed that silencing of EAF2 expression modulated the response of HCT-116 colon cancer cells to both statins. In summary, we have successfully utilized the publicly available data on the NCI60 cell lines to perform whole-genome association studies for simvastatin and lovastatin. Our results indicated genes involved in the cellular response to these statins and siRNA studies confirmed the role of the EAF2 in response to these drugs in HCT-116 colon cancer cells
    • …
    corecore